Tangent Circles

Howard Halim

March 27, 2022

Useful Techniques

Homothety

- If two circles are tangent at *T*, then there is a homothety at *T* which sends one circle to the other.
- This is a negative homothety when the circles are externally tangent, and a positive homothety when they are internally tangent.
- If you have points *A*, *B*, *C* on the first circle, you can use the homothety to get new points *A'*, *B'*, *C'* on the second circle.
- Conversely, if you have know that triangles ABC and A'B'C' are homothetic, with the center of homothety on one of their circumcircles, then their circumcircles are tangent to each other at T.

Inversion

- If two circles are tangent at *T*, an inversion centered at *T* will turn the circles into parallel lines.
- An inversion centered on one of the circles will turn the circle-circle tangency into a circle-line tangency.

Collinear Centers

- Let O_1 and O_2 be the centers of two circles which are tangent at *T*. Then O_1, O_2, T are collinear.
- O_1T and O_2T are the radii of the circles. The length of O_1O_2 is either the sum or difference of the radii, depending on whether the circles are externally or internally tangent.
- Conversely, if you know the radii and distance between the centers, you can prove that they are tangent. (might require some sort of length bash)

Common Tangent

- Suppose *T* is a point on circles ω_1 and ω_2 . Then the circles are tangent iff the tangent to ω_1 at *T* is the same line as the tangent to ω_2 at *T*.
- The common tangent is also the radical axis of ω_1 and ω_2 , so try using Power of a Point centered at some point on the tangent line.

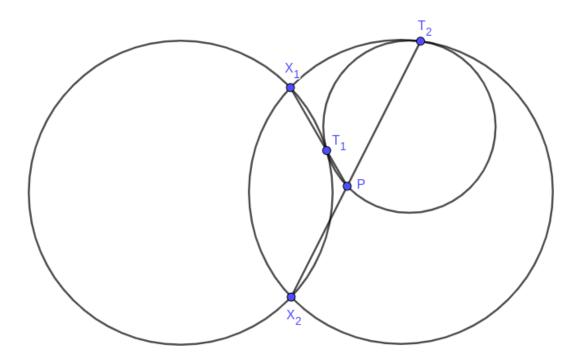
Mixtilinear Incircle

- The *A*-mixtilinear incircle of triangle *ABC* is the unique circle tangent to *AB*, *AC*, and internally tangent to the circumcircle of *ABC*.
- Evan Chen's handout: https://web.evanchen.cc/handouts/Mixt-GeoGuessr/ Mixt-GeoGuessr.pdf
- Section 2 of Yufei Zhao's handout: https://yufeizhao.com/olympiad/imo2008/ zhao-circles.pdf

Example Problems

Example 1 (EGMO 2016 P4)

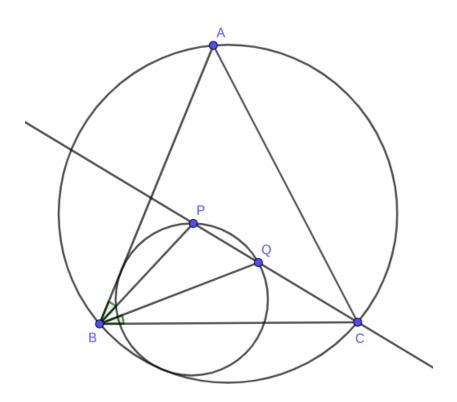
Two circles ω_1 and ω_2 , of equal radius intersect at different points X_1 and X_2 . Consider a circle ω externally tangent to ω_1 at T_1 and internally tangent to ω_2 at point T_2 . Prove that lines X_1T_1 and X_2T_2 intersect at a point lying on ω .



Example 2 (EGMO 2018 P5)

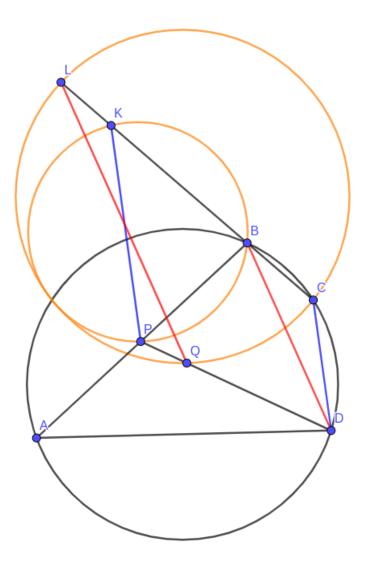
Let Γ be the circumcircle of triangle *ABC*. A circle Ω is tangent to the line segment *AB* and is tangent to Γ at a point lying on the same side of the line *AB* as *C*. The angle bisector of $\angle BCA$ intersects Ω at two different points *P* and *Q*.

Prove that $\angle ABP = \angle QBC$.



Example 3 (RMM 2018 P1)

Let ABCD be a cyclic quadrilateral and let P be a point on the side AB. The diagonal AC meets the segment DP at Q. The line through P parallel to CD meets the extension of the side CB beyond B at K. The line through Q parallel to BD meets the extension of the side CB beyond B at L. Prove that the circumcircles of the triangles BKP and CLQ are tangent.



Practice Problems

- 1. (ELMO 2012 P1) In acute triangle *ABC*, let *D*, *E*, *F* denote the feet of the altitudes from *A*, *B*, *C*, respectively, and let ω be the circumcircle of $\triangle AEF$. Let ω_1 and ω_2 be the circles through *D* tangent to ω at *E* and *F*, respectively. Show that ω_1 and ω_2 meet at a point *P* on *BC* other than *D*.
- 2. (EGMO 2013 P5) Let Ω be the circumcircle of the triangle *ABC*. The circle ω is tangent to the sides *AC* and *BC*, and it is internally tangent to the circle Ω at the point *P*. A line parallel to *AB* intersecting the interior of triangle *ABC* is tangent to ω at *Q*.

Prove that $\angle ACP = \angle QCB$.

- 3. (ISL 2020 G3) Let *ABCD* be a convex quadrilateral with $\angle ABC > 90$, $\angle CDA > 90$ and $\angle DAB = \angle BCD$. Denote by *E* and *F* the reflections of *A* in lines *BC* and *CD*, respectively. Suppose that the segments *AE* and *AF* meet the line *BD* at *K* and *L*, respectively. Prove that the circumcircles of triangles *BEK* and *DFL* are tangent to each other.
- 4. (ISL 2011 G4) Let *ABC* be an acute triangle with circumcircle Ω . Let B_0 be the midpoint of *AC* and let C_0 be the midpoint of *AB*. Let *D* be the foot of the altitude from *A* and let *G* be the centroid of the triangle *ABC*. Let ω be a circle through B_0 and C_0 that is tangent to the circle Ω at a point $X \neq A$. Prove that the points *D*, *G* and *X* are collinear.
- 5. Non-isosceles triangle $A_1A_2A_3$ is given with sides a_1, a_2, a_3 . For each *i*, M_i is the midpoint of a_i , T_i is where a_i meets the incircle of $A_1A_2A_3$, and S_i is the reflection of T_i over the angle bisector of angle A_i . Prove that the lines M_1S_1 , M_2S_2 , and M_3S_3 are concurrent.
- 6. (ISL 2017 G4) In triangle *ABC*, let ω be the excircle opposite to *A*. Let *D*, *E* and *F* be the points where ω is tangent to *BC*, *CA*, and *AB*, respectively. The circle *AEF* intersects line *BC* at *P* and *Q*. Let *M* be the midpoint of *AD*. Prove that the circle *MPQ* is tangent to ω .
- 7. (ELMO 2016 P6) Elmo is now learning olympiad geometry. In triangle *ABC* with $AB \neq AC$, let its incircle be tangent to sides *BC*, *CA*, and *AB* at *D*, *E*, and *F*, respectively. The internal angle bisector of $\angle BAC$ intersects lines *DE* and *DF* at *X* and *Y*, respectively. Let *S* and *T* be distinct points on side *BC* such that $\angle XSY = \angle XTY = 90^{\circ}$. Finally, let γ be the circumcircle of $\triangle AST$.
 - (a) Help Elmo show that γ is tangent to the circumcircle of $\triangle ABC$.
 - (b) Help Elmo show that γ is tangent to the incircle of $\triangle ABC$.

- 8. (ISL 2020 G6) Let *ABC* be a triangle with AB < AC, incenter *I*, and *A* excenter I_A . The incircle meets *BC* at *D*. Define $E = AD \cap BI_A$, $F = AD \cap CI_A$. Show that the circumcircle of $\triangle AID$ and $\triangle I_A EF$ are tangent to each other.
- (RMM 2018 P6) Fix a circle Γ, a line ℓ to tangent Γ, and another circle Ω disjoint from ℓ such that Γ and Ω lie on opposite sides of ℓ. The tangents to Γ from a variable point X on Ω meet ℓ at Y and Z. Prove that, as X varies over Ω, the circumcircle of XYZ is tangent to two fixed circles.