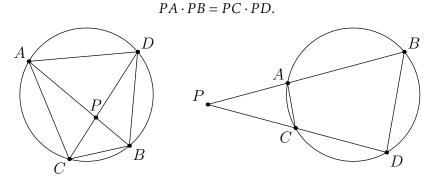
Power of a Point

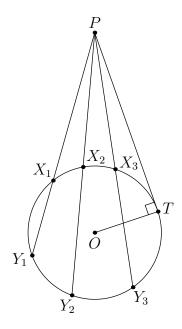
Howard Halim

July 12, 2017

Power of a Point: Let *A*, *B*, *C*, and *D* be four points on a circle. Let *P* be the intersection of lines *AB* and *CD*. Then,



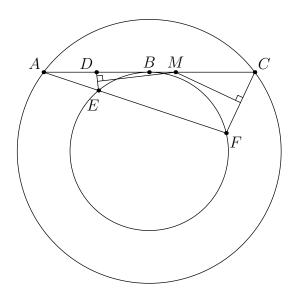
Another way of stating this theorem is: Given a point *P* and a circle ω , let a line passing through *P* intersect ω at *X* and *Y*. Then the product *PX* · *PY* has constant value, no matter which line we choose. This constant value is called the power of *P* with respect to ω , and is written as Pow(*P*, ω).



A special case is when the line passing through *P* is tangent to the circle at a point *T*. Both *X* and *Y* are the point of tangency (X = Y = T), so $Pow(P, \omega) = PX \cdot PY = PT^2$. From this, we see that $Pow(P, \omega) = PO^2 - r^2$, where *O* is the center of the circle, and *r* is the radius. (Note: *PX* and *PY* are directed lengths.) $Pow(P, \omega)$ is positive when *P* is outside of the circle, negative when *P* is inside the circle, and 0 when *P* is on the circle. **Converse of Power of a Point:** Let *A*, *B*, *C*, *D* be four distinct points, and *P* be the intersection of lines *AB* and *CD*. If $PA \cdot PB = PC \cdot PD$, then *ABCD* is cyclic (lengths are directed).

Power of a Point Problems

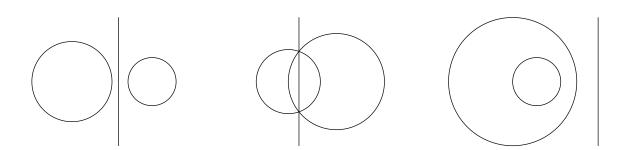
- 1. (HMMT 2007) *A*, *B*, *C*, and *D* are points on a circle, and segments \overline{AC} and \overline{BD} intersect at *P*, such that AP = 8, PC = 1, and BD = 6. Find *BP*, given that BP < DP.
- 2. Let *ABC* be a triangle with *D* on *AB* and *E* on *AC* such that $DE \perp AB$. If BE = 4 and AD = BD = CD = 3, find the length of *CE*.
- 3. (USAMO 1998) Let C_1 and C_2 be concentric circles, with C_2 in the interior of C_1 . From a point *A* on C_1 one draws the tangent *AB* to C_2 ($B \in C_2$). Let *C* be the second point of intersection of *AB* and C_1 , and let *D* be the midpoint of *AB*. A line passing through *A* intersects C_2 at *E* and *F* in such a way that the perpendicular bisectors of *DE* and *CF* intersect at a point *M* on *AB*. Find, with proof, the ratio *AM/MC*.



Radical Axis

Let ω_1 and ω_2 be two circles with centers O_1 and O_2 , and radii r_1 and r_2 . The radical axis of these two circles is the set of points with equal power with respect to both circles - i.e. the locus of points *P* such that

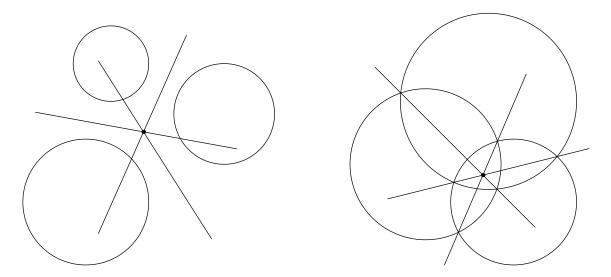
$$Pow(P, \omega_1) = Pow(P, \omega_2).$$



The radical axis is a line perpendicular to the line connecting the centers of the circles. If the circles intersect, their radical axis is the line passing through the intersection points (see the middle diagram).

Radical Center

Radical Axis Theorem: Let ω_1 , ω_2 and ω_3 be three circles. Let l_1 , 2 be the radical axis of ω_1 and ω_2 , l_2 , 3 be the radical axis of ω_2 and ω_3 , and l_3 , 1 be the radical axis of ω_3 and ω_1 . Then l_1 , 2, l_2 , 3, and l_3 , 1 are either concurrent or all parallel. If they are concurrent (which happens most of the time), the point of concurrency is called the radical center of the three circles.



Radical Axis Problems

- 1. Two circles intersect at *A* and *B*, and a line is tangent to the circles at *C* and *D*. Prove that *AB* bisects *CD*.
- 2. Let *A*, *B*, *C* be three points on a circle Λ with AB = BC. Let the tangents at *A* and *B* meet at *D*. Let *DC* meet Λ again at *E*. Prove that the line *AE* bisects segment *BD*.

- 3. (USAMO 1990) An acute-angled triangle *ABC* is given in the plane. The circle with diameter *AB* intersects altitude *CC'* and its extension at points *M* and *N*, and the circle with diameter *AC* intersects altitude *BB'* and its extensions at *P* and *Q*. Prove that the points *M*, *N*, *P*, *Q* lie on a common circle.
- 4. Let *ABC* be an acute triangle. The points *M* and *N* are taken on the sides *AB* and *AC*, respectively. The circles with diameters *BN* and *CM* intersect at points *P* and *Q*. Prove that *P*, *Q*, and the orthocenter *H* are collinear.
- 5. (USAMO 1992) Let *ABC* be a triangle. Take points *D*, *E*, *F* on the perpendicular bisectors of *BC*, *CA*, *AB* respectively. Show that the lines through *A*, *B*, *C* perpendicular to *EF*, *FD*, *DE* respectively are concurrent.

Challenge Problems

- 1. Let *ABC* be a triangle and let *D* and *E* be points on the sides *AB* and *AC*, respectively, such that *DE* is parallel to *BC*. Let *P* be any point interior to triangle *ADE*, and let *F* and *G* be the intersections of *DE* with the lines *BP* and *CP*, respectively. Let *Q* be the second intersection point of the circumcircles of triangles *PDG* and *PFE*. Prove that the points *A*, *P*, and *Q* are collinear.
- 2. (IMO 1995) Let *A*, *B*, *C*, and *D* be four distinct points on a line, in that order. The circles with diameters *AC* and *BD* intersect at *X* and *Y*. The line *XY* meets *BC* at *Z*. Let *P* be a point on the line *XY* other than *Z*. The line *CP* intersects the circle with diameter *AC* at *C* and *M*, and the line *BP* intersects the circle with diameter *BD* at *B* and *N*. Prove that the lines *AM*, *DN*, and *XY* are concurrent.
- 3. (IMO 2008) Let *H* be the orthocenter of an acute-angled triangle *ABC*. The circle Γ_A centered at the midpoint of *BC* and passing through *H* intersects line *BC* at points A_1 and A_2 . Similarly, define the points B_1 , B_2 , C_1 and C_2 .

Prove that six points A_1 , A_2 , B_1 , B_2 , C_1 and C_2 are concyclic.